

Breaking Absolute Limits in Sports: Blessing or Blight?

Ned Meikott

Keywords: marathon, world record progression, regression model, prediction

Abstract

Records are made to be broken. Marathon world records have been continually renewed for the past century. Our prime concern now is not *if* it is possible to break absolute limits of the record, but *when* we are going to witness that historic moment. By using statistical procedure this study attempts to make a prediction of the day when the marathon world record will reach its absolute limit of 0:00:00. It also examines the impact of that historic achievement on society and explores how it will change our life.

Berlin, September 28, 2014. The cheer from the crowd that gathered around the Brandenburg Gate got louder and louder as Dennis Kimetto, 30, approached the goal of the 26.2-mile stretch. The cheer rose to a crescendo when he crossed the finish line with both of his hands high above his head. The big LED board beside the finish line proudly displayed 2:03:00. The record barrier of 2:03:00, which had been thought impossible, was shattered. The crowd that gathered here were the witnesses of this historic moment.

Since marathon became an athletic competition, its record has been continually improved upon. When John Hayes ran in

the 1908 London Olympics, he marked the record of 2:55:18, which surprised the people of that day. Dennis Kimetto had reduced the record by 55 minutes and 21 seconds in one hundred and six years.

Is the record that Dennis Kimetto marked the ultimate limit or is it to be renewed in the near future? Péronnet and Thibault (1989) have developed equations to predict the ultimate marathon record that athletes can achieve. They predict that the 2:02:00 barrier will be shattered no later than 2028, and by 2040 the record should drop to 1:57:18. The scientifically plausible limit, according to their prediction, is 1:48:25.

Joyner (1991) questions this prediction made by Péronnet and Thibault (1989) from the viewpoint of practical feasibility. According to Joyner (1991), there are three key factors that are crucial to athletic performance: efficiency of oxygen consumption, blood-lactate threshold, and running economy. Joyner (1991) argues that Péronnet and Thibault (1989) do not place these interrelated factors in proper perspective. Based upon his model Joyner (1991) predicts the ultimately feasible marathon record will be 1:57:58.

Brenkus (2011) has done an exhaustive research that includes the history of marathon, physiological requirements for an outstanding record, the psychology of athletes, and a thorough review of previous research by Péronnet and Thibault (1989) and Joyner (1991). Brenkus (2011) examines requirements for an ideal marathoner, which he breaks down into three components: optimal aerobic metabolism, efficiency of the muscles for utilizing fat, and the ability to store up carbohydrates. Brenkus (2011) concludes that these abilities can be developed through training even though some of these attributes are genetic. After a careful review of the work by Péronnet and Thibault (1989) and Joyner (1991) Brenkus (2011) supports the prediction made by Joyner (1991), who concludes that the ultimate possible marathon record is 1:57:58.

The best marathon record that exists as of 2017 is 2:02:57 that Dennis Kimetto made in 2014. Is this record ever to be broken? If it is, will it be the ultimate limit of the marathon record, or is that record also destined to be broken again. This question

goes on endlessly.

In this study we will examine the historical progressions of marathon world records for the past century and attempt to predict the year when the record is expected to reach its perfection point, 00:00:00. We will also examine the impact of that historic achievement on society and explore how it will change our life.

Method

Data Collection

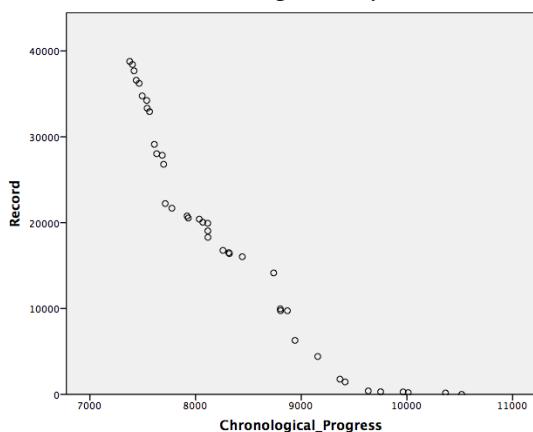
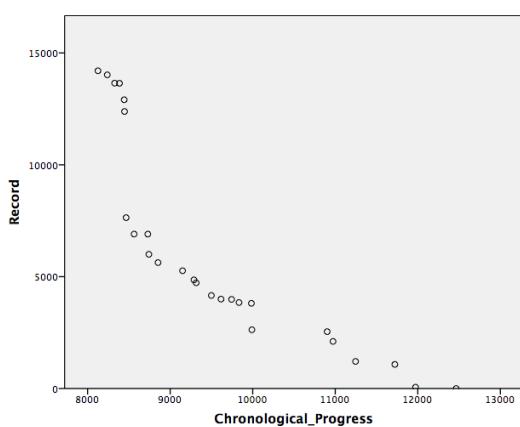
The data for this study were compiled from the lists of marathon records published by the International Association of Athletics Federations (IAAF), MarathonGuide.com, and other related sources. Tables 1 and 2 are the summary of data compiled respectively for men and women. The oldest reliable world record is 2:55:18 John Hayes marked at London Olympics on July 24, 1908. Dorando Pietri, an Italian runner, had actually crossed the finish line 32 seconds earlier than John Hayes, marking 2:54:46. Pietri, however, collapsed before the finish line and was aided by doctors. For this reason he was disqualified. For the sake of rigor we did not use Pietri's record for our data.

There exist older records than this, but they come from running a distance shorter than 26 miles and 385 yards. Before 1908 the distance run in the race was approximately 25 miles. People were more interested in who would arrive first than in the record the runners would make. The 1908 London Olympics was the first official marathon race in which athletes ran over the distance of 26 miles and 385 yards.

Table 1
World Record Progression for Men

Date	Record Holder	Time	Seconds	Days
Jul 24, 1908	John Hayes	2:55:18	10,518	0
Jan 1, 1909	Robert Fowler	2:52:45	10,365	161
Feb 12, 1909	James Clark	2:46:52	10,012	203
May 8, 1909	Albert Raines	2:46:04	9,964	288
May 26, 1909	Harry Barrett	2:42:31	9,751	306
Aug 31, 1909	Thure Johansson	2:40:34	9,634	403
Jul 14, 1912	Kenneth McArthur	2:36:55	9,415	1,451
May 31, 1913	Alexis Ahlgren	2:36:06	9,366	1,772
Aug 22, 1920	Johannes Kolehmainen	2:32:36	9,156	4,412
Oct 12, 1925	Albert Michelsen	2:29:01	8,941	6,289
Mar 31, 1935	Fusashige Suzuki	2:27:49	8,869	9,746
Apr 3, 1935	Yasuo Ikenaka	2:26:44	8,804	9,749
Nov 3, 1935	Sohn Kee-chung	2:26:42	8,802	9,963
Apr 19, 1947	Such Yun-bok	2:25:39	8,739	14,148
Jun 14, 1952	James Peters	2:20:42	8,442	16,031
Jun 13, 1953	James Peters	2:18:40	8,320	16,395
Oct 4, 1953	James Peters	2:18:34	8,314	16,508
Jun 26, 1954	James Peters	2:17:39	8,259	16,773
Aug 24, 1958	Sergey Popov	2:15:17	8,117	18,293
Sep 10, 1960	Abebe Bikila	2:15:16	8,116	19,041
Feb 17, 1963	Toru Terasawa	2:15:15	8,115	19,931
Jun 15, 1963	Leonard Edelen	2:14:28	8,068	20,049
Jun 13, 1964	Basil Heatley	2:13:55	8,035	20,413
Oct 21, 1964	Abebe Bikila	2:12:11	7,931	20,543
Jun 12, 1965	Morio Shigematsu	2:12:00	7,920	20,777
Dec 3, 1967	Derek Clayton	2:09:36	7,776	21,681
May 30, 1969	Derek Clayton	2:08:33	7,713	22,225
Dec 6, 1981	Robert de Castella	2:08:18	7,698	26,798
Oct 21, 1984	Steve Jones	2:08:05	7,685	27,848
Apr 20, 1985	Carlos Lopes	2:07:12	7,632	28,029
Apr 17, 1988	Belayneh Dinsamo	2:06:50	7,610	29,122
Sep 20, 1998	Ronaldo de Costa	2:06:05	7,565	32,930
Oct 24, 1999	Khalid Khannouchi	2:05:42	7,542	33,329
Apr 14, 2002	Khalid Khannouchi	2:05:38	7,538	34,232
Sep 28, 2003	Paul Tergat	2:04:55	7,495	34,764
Sep 30, 2007	Haile Gebrselassie	2:04:26	7,466	36,227
Sep 28, 2008	Haile Gebrselassie	2:03:59	7,439	36,591
Sep 25, 2011	Patrick Makau	2:03:38	7,418	37,683
Sep 29, 2013	Wilson Kipsang	2:03:23	7,403	38,418
Sep 28, 2014	Dennis Kimetto	2:02:57	7,377	38,782

Table 2
World Record Progression for Women



Date	Record Holder	Time	Seconds	Days
May 23, 1964	Dale Greg	3:27:45	12,465	0
Jul 21, 1964	Mildred Simpson	3:19:33	11,973	59
May 6, 1967	Maureen Wilton	3:15:22	11,722	1,078
Sep 16, 1967	Anni Pede-Erdkamp	3:07:26	11,246	1,211
Feb 28, 1970	Caroline Walker	3:02:53	10,973	2,107
May 9, 1971	Elizabeth Bonner	3:01:42	10,902	2,542
Aug 1, 1971	Adrienne Beames	2:46:30	9,990	2,626
Oct 27, 1974	Chantal Langlace	2:46:24	9,984	3,809
Dec 1, 1974	Jackie Hansen	2:43:54	9,834	3,844
Apr 21, 1975	Liane Winter	2:42:24	9,744	3,985
May 3, 1975	Christa Vahlensieck	2:40:16	9,616	3,997
Oct 12, 1975	Jackie Hansen	2:38:19	9,499	4,159
May 1, 1977	Chantal Langlace	2:35:15	9,315	4,726
Sep 10, 1977	Christa Vahlensieck	2:34:48	9,288	4,858
Oct 22, 1978	Grete Waitz	2:32:30	9,150	5,265
Oct 21, 1979	Grete Waitz	2:27:33	8,853	5,629
Oct 26, 1980	Grete Waitz	2:25:42	8,742	6,000
Apr 17, 1983	Grete Waitz	2:25:29	8,729	6,903
Apr 18, 1983	Joan Benoit Samuelson	2:22:43	8,563	6,904
Apr 21, 1985	Ingrid Kristiansen	2:21:06	8,466	7,638
Apr 19, 1998	Tegla Loroupe	2:20:47	8,447	12,384
Sep 26, 1999	Tegla Loroupe	2:20:43	8,443	12,909
Sep 30, 2001	Naoko Takahashi	2:19:46	8,386	13,644
Oct 7, 2001	Catherine Ndereba	2:18:47	8,327	13,651
Oct 13, 2002	Paula Radcliffe	2:17:18	8,238	14,022
Apr 13, 2003	Paula Radcliffe	2:15:25	8,125	14,204

Measures

In this study the chronological data were converted to the decimal system for the convenience of computation. The conventional notation using hours, minutes, and seconds, was converted the total amount of seconds. Thus John Hayes' record 2:55:18 will read 10,518 seconds. The amount of time that needed to renew the world record after John Hayes was converted to the total number of days. Dennis Kimetto, for instance, renewed the world record 38,782 days after John Hayes.

Results

Pearson product-moment correlation coefficients were computed to assess the relationship between the time that was required to run the distance of 26 miles and 385 yards and the number of days it took to achieve that record. There were positive reverse correlations between the two variables, $r = -.94$, $n = 40$, $p = .00$ for men, and $r = -.85$, $n = 26$, $p = .00$ for women. Figures 1 and 2 are scatter plots respectively for men and women.

Figure 1*World Record Progression for Men***Figure 2***World Record Progression for Women*

Simple linear regressions were calculated for men and women to predict the record based on the amount of elapsed time, which is represented by CP (Chronological Progress) in the following equation. For men, a significant regression equation was found ($F(1,38) = 312.411, p < .000$), with an R^2 of .892. The amount of time needed to run the distance of 26 miles and 385 yards measured in seconds is equal to:

$$-.067(CP) + 9629.008 \text{ seconds}$$

For women, a significant regression equation was also found ($F(1,24) = 60.990, p < .000$), with an R^2 of .706. The equation that predicts the record is:

$$-.233(CP) + 10995.848 \text{ seconds}$$

Now we are ready to answer the question: When will we achieve the ultimate world record of 0:00:00? It is January 16, 2302 (143716.41 days after July 24, 1908, when Joh Hayes marked the record of 2:55:18) for men, and November 22, 2432 (47808.00 days after May 23, 1964 when Dale Greg marked the record of 3:27:45) for women.

Discussion

Is there an absolute minimum time to run a marathon? Is there a point beyond which runner can no longer renew the world record? The answer is undoubtedly "no" as the history of marathon eloquently demonstrates and as the formulas above indicate.

The historic moment of marathon to be witnessed in the future will be January 16, 2302, when the world record will drop to 0:00:00. This means the instant the cannon blast signals the start of a 26.2-mile journey, the runner is crossing the finish line at the goal at the same time.

We can go a step further in our prediction. What will happen after the year 2302? When the starting cannon goes off, the runner will have already crossed the finish line. Here we will be facing a tough problem. The runner has crossed the finish line before the cannon blasts off. In other

words, the runner has already started before the official signal is given. Isn't this a false start and shouldn't the runner be disqualified? If the runner wants to avoid being disqualified, he or she will be required to run below the world record and cannot renew the record any more. This will eventually lead to the decline of marathon as an athletic competition, and herald the end of history of marathon.

There is, however, a bright side on this. Even though shattering the barrier of 0:00:00 leads to the decline of marathon, it will bravely open the door of physics into the future. The renewal of the world record after the year 2302 means that the runner is going back in history. We will be reversing the passage of time. For the first time in history human beings will be able to travel backward in time.

The impact of this astounding feat is not an achievement in physics alone. It will change every aspect of our social life. By traveling back in history we will be able to solve great mysteries that have remained unsolved. Who killed President John F. Kennedy? Did Atlantis really exist? The Roswell UFO Incident that supposedly took place in July 1947 in New Mexico a true story? Why did the dinosaurs die out? All these mysteries in history will be solved when we can go back in time.

There is no doubt the year 2302 is going to be a historic moment. We have to wait another two hundred years before the mysteries of history are solved. Yet it is not impossible to accelerate the pace to proceed to that moment. Marathon athletes can improve their physical and mental capacities with professional assistance from

qualified coaches. Improved training facilities will also make a great contribution. When more government budgets are appropriated to the improvement of the resources for athletic training, we will be able to accelerate the pace of the world record renewal and should be able to witness the historic year before 2302.

References

- Brenkus, J. (2011). *The perfection point*. New York: HarperCollins.
- Joyner, M. J. (1991). Modeling: Optimal Marathon Performance on the basis of Physiological Factors. *Journal of Applied Physiology*, 70, 683-7.
- Péronnet ,F., & Thibault G. (1989). Mathematical Analysis of Running Performance and World Running Records. *Journal of Applied Physiology*, 67, 453-65.